Large Language Models (LLMs) and Reinforcement Learning (RL) Training Course
Large Language Models (LLMs) are advanced types of neural networks designed to understand and generate human-like text based on the input they receive. Reinforcement Learning (RL) is a type of machine learning where an agent learns to make decisions by performing actions in an environment to maximize cumulative rewards.
This instructor-led, live training (online or onsite) is aimed at intermediate-level data scientists who wish to gain a comprehensive understanding and practical skills in both Large Language Models (LLMs) and Reinforcement Learning (RL).
By the end of this training, participants will be able to:
- Understand the components and functionality of transformer models.
- Optimize and fine-tune LLMs for specific tasks and applications.
- Understand the core principles and methodologies of reinforcement learning.
- Learn how reinforcement learning techniques can enhance the performance of LLMs.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to Large Language Models (LLMs)
- Overview of LLMs
- Definition and significance
- Applications in AI today
Transformer Architecture
- What is a transformer and how does it work?
- Main components and features
- Embedding and positional encoding
- Multi-head attention
- Feed-forward neural network
- Normalization and residual connections
Transformer Models
- Self-attention mechanism
- Encoder-decoder architecture
- Positional embeddings
- BERT (Bidirectional Encoder Representations from Transformers)
- GPT (Generative Pretrained Transformer)
Performance Optimization and Pitfalls
- Context length
- Mamba and state-space models
- Flash attention
- Sparse transformers
- Vision transformers
- Importance of quantization
Improving Transformers
- Retrieval augmented text generation
- Mixture of models
- Tree of thoughts
Fine-Tuning
- Theory of low-rank adaptation
- Fine-Tuning with QLora
Scaling Laws and Optimization in LLMs
- Importance of scaling laws for LLMs
- Data and model size scaling
- Computational scaling
- Parameter efficiency scaling
Optimization
- Relationship between model size, data size, compute budget, and inference requirements
- Optimizing performance and efficiency of LLMs
- Best practices and tools for training and fine-tuning LLMs
Training and Fine-Tuning LLMs
- Steps and challenges of training LLMs from scratch
- Data acquisition and maintenance
- Large-scale data, CPU, and memory requirements
- Optimization challenges
- Landscape of open-source LLMs
Fundamentals of Reinforcement Learning (RL)
- Introduction to Reinforcement Learning
- Learning through positive reinforcement
- Definition and core concepts
- Markov Decision Process (MDP)
- Dynamic programming
- Monte Carlo methods
- Temporal Difference Learning
Deep Reinforcement Learning
- Deep Q-Networks (DQN)
- Proximal Policy Optimization (PPO)
- Elements of Reinforcement Learning
Integration of LLMs and Reinforcement Learning
- Combining LLMs with Reinforcement Learning
- How RL is used in LLMs
- Reinforcement Learning with Human Feedback (RLHF)
- Alternatives to RLHF
Case Studies and Applications
- Real-world applications
- Success stories and challenges
Advanced Topics
- Advanced techniques
- Advanced optimization methods
- Cutting-edge research and developments
Summary and Next Steps
Requirements
- Basic understanding of Machine Learning
Audience
- Data scientists
- Software engineers
Open Training Courses require 5+ participants.
Large Language Models (LLMs) and Reinforcement Learning (RL) Training Course - Booking
Large Language Models (LLMs) and Reinforcement Learning (RL) Training Course - Enquiry
Large Language Models (LLMs) and Reinforcement Learning (RL) - Consultancy Enquiry
Consultancy Enquiry
Upcoming Courses
Related Courses
Building Private AI Workflows with Ollama
14 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at advanced-level professionals who wish to implement secure and efficient AI-driven workflows using Ollama.
By the end of this training, participants will be able to:
- Deploy and configure Ollama for private AI processing.
- Integrate AI models into secure enterprise workflows.
- Optimize AI performance while maintaining data privacy.
- Automate business processes with on-premise AI capabilities.
- Ensure compliance with enterprise security and governance policies.
Claude AI for Content Creation
14 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at beginner-level to intermediate-level content creators, writers, and marketers who want to leverage Claude AI for content generation, editing, and summarization to enhance blogs, reports, and marketing materials.
By the end of this training, participants will be able to:
- Use Claude AI for content brainstorming and idea expansion.
- Enhance writing with AI-assisted editing and proofreading.
- Generate summaries for long-form content and reports.
- Automate marketing copy creation for different platforms.
Claude AI for Developers: Building AI-Powered Applications
14 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at intermediate-level software developers and AI engineers who wish to integrate Claude AI into their applications, build AI-powered chatbots, and enhance software functionality with AI-driven automation.
By the end of this training, participants will be able to:
- Use the Claude AI API to integrate AI into applications.
- Develop AI-driven chatbots and virtual assistants.
- Enhance applications with AI-powered automation and NLP.
- Optimize and fine-tune Claude AI models for different use cases.
Claude AI for Research and Knowledge Management
14 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at intermediate-level researchers, analysts, and knowledge workers who want to leverage Claude AI for processing large amounts of data, synthesizing information, and automating research tasks.
By the end of this training, participants will be able to:
- Use Claude AI for literature reviews and research synthesis.
- Summarize reports, research papers, and long-form documents.
- Extract key insights and trends from structured and unstructured data.
- Integrate Claude AI into research and knowledge management workflows.
Claude AI for Workflow Automation and Productivity
14 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at beginner-level professionals who wish to integrate Claude AI into their daily workflows to improve efficiency and automation.
By the end of this training, participants will be able to:
- Use Claude AI for automating repetitive tasks and streamlining workflows.
- Enhance personal and team productivity using AI-powered automation.
- Integrate Claude AI with existing business tools and platforms.
- Optimize AI-driven decision-making and task management.
Deploying and Optimizing LLMs with Ollama
14 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at intermediate-level professionals who wish to deploy, optimize, and integrate LLMs using Ollama.
By the end of this training, participants will be able to:
- Set up and deploy LLMs using Ollama.
- Optimize AI models for performance and efficiency.
- Leverage GPU acceleration for improved inference speeds.
- Integrate Ollama into workflows and applications.
- Monitor and maintain AI model performance over time.
Fine-Tuning and Customizing AI Models on Ollama
14 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at advanced-level professionals who wish to fine-tune and customize AI models on Ollama for enhanced performance and domain-specific applications.
By the end of this training, participants will be able to:
- Set up an efficient environment for fine-tuning AI models on Ollama.
- Prepare datasets for supervised fine-tuning and reinforcement learning.
- Optimize AI models for performance, accuracy, and efficiency.
- Deploy customized models in production environments.
- Evaluate model improvements and ensure robustness.
Introduction to Google Gemini AI
14 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at beginner-level to intermediate-level developers who wish to integrate AI functionalities into their applications using Google Gemini AI.
By the end of this training, participants will be able to:
- Understand the fundamentals of large language models.
- Set up and use Google Gemini AI for various AI tasks.
- Implement text-to-text and image-to-text transformations.
- Build basic AI-driven applications.
- Explore advanced features and customization options in Google Gemini AI.
Google Gemini AI for Content Creation
14 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at intermediate-level content creators who wish to utilize Google Gemini AI to enhance their content quality and efficiency.
By the end of this training, participants will be able to:
- Understand the role of AI in content creation.
- Set up and use Google Gemini AI to generate and optimize content.
- Apply text-to-text transformations to produce creative and original content.
- Implement SEO strategies using AI-driven insights.
- Analyze content performance and adapt strategies using Gemini AI.
Google Gemini AI for Transformative Customer Service
14 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at intermediate-level customer service professionals who wish to implement Google Gemini AI in their customer service operations.
By the end of this training, participants will be able to:
- Understand the impact of AI on customer service.
- Set up Google Gemini AI to automate and personalize customer interactions.
- Utilize text-to-text and image-to-text transformations to improve service efficiency.
- Develop AI-driven strategies for real-time customer feedback analysis.
- Explore advanced features to create a seamless customer service experience.
Google Gemini AI for Data Analysis
21 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at beginner-level to intermediate-level data analysts and business professionals who wish to perform complex data analysis tasks more intuitively across various industries using Google Gemini AI.
By the end of this training, participants will be able to:
- Understand the fundamentals of Google Gemini AI.
- Connect various data sources to Gemini AI.
- Explore data using natural language queries.
- Analyze data patterns and derive insights.
- Create compelling data visualizations.
- Communicate data-driven insights effectively.
Intermediate Gemini AI for Public Sector Professionals
16 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at intermediate-level public sector professionals who wish to use Gemini to generate high-quality content, assist with research, and improve productivity through more advanced AI interactions.
By the end of this training, participants will be able to:
- Craft more effective and tailored prompts for specific use cases.
- Generate original and creative content using Gemini.
- Summarize and compare complex information with precision.
- Use Gemini for brainstorming, planning, and organizing ideas efficiently.
Introduction to Claude AI: Conversational AI and Business Applications
14 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at beginner-level business professionals, customer support teams, and tech enthusiasts who wish to understand the fundamentals of Claude AI and leverage it for business applications.
By the end of this training, participants will be able to:
- Understand Claude AI’s capabilities and use cases.
- Set up and interact with Claude AI effectively.
- Automate business workflows with conversational AI.
- Enhance customer engagement and support using AI-driven solutions.
LangChain: Building AI-Powered Applications
14 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at intermediate-level developers and software engineers who wish to build AI-powered applications using the LangChain framework.
By the end of this training, participants will be able to:
- Understand the fundamentals of LangChain and its components.
- Integrate LangChain with large language models (LLMs) like GPT-4.
- Build modular AI applications using LangChain.
- Troubleshoot common issues in LangChain applications.
Getting Started with Ollama: Running Local AI Models
7 HoursThis instructor-led, live training in Guatemala (online or onsite) is aimed at beginner-level professionals who wish to install, configure, and use Ollama for running AI models on their local machines.
By the end of this training, participants will be able to:
- Understand the fundamentals of Ollama and its capabilities.
- Set up Ollama for running local AI models.
- Deploy and interact with LLMs using Ollama.
- Optimize performance and resource usage for AI workloads.
- Explore use cases for local AI deployment in various industries.