Cursos de Inteligencia Artificial

Cursos de Inteligencia Artificial

Los cursos locales dirigidos por instructor en vivo de capacitación en Inteligencia Artificial (IA) demuestran, a través de prácticas manuales, cómo implementar soluciones de inteligencia artificial para resolver problemas del mundo real. La capacitación en IA está disponible en dos modalidades: "presencial en vivo" y "remota en vivo"; la primera se puede llevar a cabo localmente en las instalaciones del cliente en Guatemala o en los centros de capacitación corporativa de NobleProg en Guatemala, la segunda se lleva a cabo a través de un escritorio remoto interactivo.

NobleProg -- Su Proveedor Local de Capacitación

Testimonios

★★★★★
★★★★★

Algunos de nuestros clientes

Programas de los cursos AI (Artificial Intelligence)

Nombre del Curso
Duración
Descripción General
Nombre del Curso
Duración
Descripción General
7 horas
Descripción General
Este curso ha sido creado para gerentes, arquitectos de soluciones, oficiales de innovación, CTO, arquitectos de software y todos los interesados en la visión general de la inteligencia artificial aplicada y el pronóstico más cercano para su desarrollo.
21 horas
Descripción General
Este curso ha sido diseñado para personas interesadas en extraer significado del texto escrito en inglés, aunque el conocimiento se puede aplicar a otros lenguajes humanos.

El curso cubrirá cómo hacer uso de textos escritos por humanos, como blogs, tweets, etc ...

Por ejemplo, un analista puede configurar un algoritmo que llegará a una conclusión automática basada en una fuente de datos extensa.
7 horas
Descripción General
El curso está dirigido para las personas que quieren aprender lo básico de neural networks y sus aplicaciones.
14 horas
Descripción General
Este curso es una introducción a la aplicación de redes neuronales en problemas del mundo real utilizando el software R-project.
21 horas
Descripción General
Audiencia

Si intenta dar sentido a los datos a los que tiene acceso o desea analizar datos no estructurados disponibles en la red (como Twitter, Linked in, etc ...) este curso es para usted.

Está dirigido principalmente a los tomadores de decisiones y las personas que necesitan elegir qué datos vale la pena recopilar y qué vale la pena analizar.

No está dirigido a las personas que configuran la solución, esas personas se beneficiarán de la imagen grande sin embargo.

Modo de entrega

Durante el curso se presentarán a los delegados ejemplos prácticos de la mayoría de las tecnologías de código abierto.

Las conferencias cortas serán seguidas por la presentación y los ejercicios simples por los participantes

Contenido y software utilizados

Todo el software utilizado se actualiza cada vez que se ejecuta el curso, así que verificamos las versiones más recientes posibles.

Cubre el proceso de obtener, formatear, procesar y analizar los datos, para explicar cómo automatizar el proceso de toma de decisiones con el aprendizaje automático.
21 horas
Descripción General
Este curso es un enfoque práctico a la herramienta OptaPLanner, proporcionando a los partidarios todas como herramientas para obtener un conocimiento introductorio único y funcional que permiten realizar como funciones basicas nessa ferramenta.
7 horas
Descripción General
Este curso de capacitación es para personas que deseen aplicar técnicas básicas de Aprendizaje de Máquinas en aplicaciones prácticas.

Científicos de datos y estadísticos que tienen cierta familiaridad con el aprendizaje de máquinas y saben cómo programar R. El énfasis de este curso está en los aspectos prácticos de la preparación de datos / modelos, la ejecución, el análisis post hoc y la visualización. El propósito es dar una introducción práctica al aprendizaje automático a los participantes interesados en aplicar los métodos en el trabajo

Se utilizan ejemplos específicos del sector para hacer que la formación sea relevante para el público.
14 horas
Descripción General
Este curso de capacitación es para personas que deseen aplicar Aprendizaje de la Máquina en aplicaciones prácticas.

Audiencia

Este curso es para científicos de datos y estadísticos que tienen cierta familiaridad con las estadísticas y saben cómo programar R (o Python u otro idioma elegido). El énfasis de este curso está en los aspectos prácticos de la preparación de datos / modelos, la ejecución, el análisis post hoc y la visualización.

El propósito es dar aplicaciones prácticas al Aprendizaje Automático a los participantes interesados en aplicar los métodos en el trabajo.

Se utilizan ejemplos específicos del sector para hacer que la formación sea relevante para el público.
14 horas
Descripción General
El objetivo de este curso es proporcionar una competencia básica en la aplicación de los métodos de aprendizaje automático en la práctica. A través del uso del lenguaje de programación Python y sus diversas bibliotecas, y basado en una multitud de ejemplos prácticos, este curso enseña cómo usar los bloques de construcción más importantes de Aprendizaje de Máquinas, cómo tomar decisiones de modelado de datos, interpretar las salidas de los algoritmos y Validar los resultados.

Nuestro objetivo es darle las habilidades para entender y usar las herramientas más fundamentales de la caja de herramientas de Aprendizaje de Máquinas con confianza y evitar las trampas comunes de las aplicaciones de Data Sciences.
14 horas
Descripción General
El objetivo de este curso es proporcionar una competencia básica en la aplicación de los métodos de aprendizaje automático en la práctica. A través del uso de la plataforma de programación R y sus diversas bibliotecas, y basado en una multitud de ejemplos prácticos, este curso enseña cómo usar los bloques de construcción más importantes de Aprendizaje de Máquinas, cómo tomar decisiones de modelado de datos, interpretar los resultados de los algoritmos y Validar los resultados.

Nuestro objetivo es darle las habilidades para entender y usar las herramientas más fundamentales de la caja de herramientas de Aprendizaje de Máquinas con confianza y evitar las trampas comunes de las aplicaciones de Data Sciences.
21 horas
Descripción General
Artificial Neural Network es un modelo de datos computacional usado en el desarrollo de sistemas de Artificial Intelligence (AI) capaces de realizar tareas "inteligentes". Neural Networks se usan comúnmente en aplicaciones de Machine Learning (ML), que son en sí mismas una implementación de AI. Deep Learning es un subconjunto de ML.
21 horas
Descripción General
This course will be a combination of theory and practical work with specific examples used throughout the event.
21 horas
Descripción General
Este curso introduce métodos de aprendizaje automático en aplicaciones de robótica.

Es un amplio panorama de los métodos existentes, motivaciones e ideas principales en el contexto del reconocimiento de patrones.

Después de un breve trasfondo teórico, los participantes realizarán ejercicios sencillos usando código abierto (normalmente R) o cualquier otro software popular.
21 horas
Descripción General
Este curso es una visión general de Deep Learning sin profundizar en ningún método específico. Es adecuado para las personas que quieren empezar a usar el aprendizaje profundo para mejorar su precisión de la predicción.
21 horas
Descripción General
MATLAB is a numerical computing environment and programming language developed by MathWorks.
21 horas
Descripción General
Artificial Neural Network es un modelo de datos computacional usado en el desarrollo de sistemas de Artificial Intelligence (AI) capaces de realizar tareas "inteligentes". Neural Networks se usan comúnmente en aplicaciones de Machine Learning (ML), que son en sí mismas una implementación de AI. Deep Learning es un subconjunto de ML.
28 horas
Descripción General
El aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar explícitamente programadas. El aprendizaje profundo es un subcampo del aprendizaje automático que utiliza métodos basados en representaciones de datos de aprendizaje y estructuras como las redes neuronales.
28 horas
Descripción General
Este curso introduce a los lingüistas o programadores a la PNL en Python. Durante este curso utilizaremos principalmente nltk.org (Natural Language Tool Kit), pero también usaremos otras bibliotecas relevantes y útiles para PNL. Por el momento podemos realizar este curso en Python 2.x o Python 3.x. Los ejemplos son en inglés o mandarín (普通话). Otros idiomas también pueden ponerse a disposición si se acuerda antes de reservar.
14 horas
Descripción General
El objetivo de este curso es proporcionar una competencia básica en la aplicación de métodos de aprendizaje automático en la práctica. A través del uso del lenguaje de programación Scala y de sus diversas bibliotecas, y basado en una multitud de ejemplos prácticos, este curso enseña cómo usar los bloques de construcción más importantes de Aprendizaje de Máquinas, cómo tomar decisiones de modelado de datos, interpretar las salidas de los algoritmos y validar los resultados.

Nuestro objetivo es darle las habilidades para entender y usar las herramientas más fundamentales de la caja de herramientas de Aprendizaje de Máquinas con confianza y evitar las trampas comunes de las aplicaciones de Data Sciences.
14 horas
Descripción General
R es un lenguaje de programación libre de código abierto para computación estadística, análisis de datos y gráficos. R es utilizado por un número creciente de gerentes y analistas de datos dentro de las corporaciones y el mundo académico. R tiene una amplia variedad de paquetes para minería de datos.
14 horas
Descripción General
R es un lenguaje de programación libre de código abierto para computación estadística, análisis de datos y gráficos. R es utilizado por un número creciente de gerentes y analistas de datos dentro de las corporaciones y el mundo académico. R tiene una amplia variedad de paquetes para minería de datos.
21 horas
Descripción General
TensorFlow es una API de segunda generación de la biblioteca de software de código abierto de Google para Deep Learning. El sistema está diseñado para facilitar la investigación en aprendizaje de máquina, y para hacer rápida y fácil la transición del prototipo de investigación al sistema de producción.

Audiencia

Este curso está dirigido a ingenieros que buscan usar TensorFlow para sus proyectos de Aprendizaje Profundo

Después de completar este curso, los delegados:

- entender la estructura y los mecanismos de despliegue de TensorFlow
- ser capaz de llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración
- ser capaz de evaluar la calidad del código, realizar depuración,
- ser capaz de implementar producción avanzada como los modelos de entrenamiento, la construcción de gráficos y registro
21 horas
Descripción General
PredictionIO es un servidor de Aprendizaje de Máquina de código abierto construido sobre la pila de código abierto de última generación.

Audiencia

Este curso está dirigido a desarrolladores y científicos de datos que quieren crear motores predictivos para cualquier tarea de aprendizaje automático.
21 horas
Descripción General
R es un lenguaje de programación libre de código abierto para computación estadística, análisis de datos y gráficos R es utilizado por un número creciente de gerentes y analistas de datos dentro de las corporaciones y la academia R tiene una amplia variedad de paquetes para minería de datos .
28 horas
Descripción General
Computer Network Toolkit (CNTK) es el sistema de aprendizaje de la máquina de entrenamiento de RNN de Open Source, Multi-máquina, Multi-GPU, altamente eficiente de habla, texto e imágenes.

Audiencia

Este curso está dirigido a ingenieros y arquitectos con el objetivo de utilizar CNTK en sus proyectos.
14 horas
Descripción General
Apache SystemML es una plataforma de aprendizaje distribuida y declarativa.

SystemML proporciona un aprendizaje declarativo a máquina a gran escala (ML) que tiene como objetivo la especificación flexible de algoritmos de ML y la generación automática de planes de tiempo de ejecución híbridos que van desde un nodo único, cálculos en memoria hasta cálculos distribuidos en Apache Hadoop y Apache Spark.

Audiencia

Este curso es adecuado para los investigadores, desarrolladores e ingenieros de Learning Machine que buscan utilizar SystemML como un marco para el aprendizaje automático.
28 horas
Descripción General
Este curso explora, con ejemplos específicos, la aplicación de Flujo Tensor a los propósitos de reconocimiento de imagen

Audiencia

Este curso está dirigido a ingenieros que buscan utilizar TensorFlow para los propósitos de reconocimiento de imágenes

Después de completar este curso, los delegados podrán:

- entender la estructura y los mecanismos de despliegue de TensorFlow
- llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración
- evaluar la calidad del código, realizar depuración, monitoreo
- implementar la producción avanzada como modelos de formación, creación de gráficos y registro
28 horas
Descripción General
OpenCV (Open Source Computer Vision Library: http://opencv.org) is an open-source BSD-licensed library that includes several hundreds of computer vision algorithms.

Audience

This course is directed at engineers and architects seeking to utilize OpenCV for computer vision projects
35 horas
Descripción General
TensorFlow ™ es una biblioteca de software de código abierto para computación numérica utilizando gráficos de flujo de datos.

SyntaxNet es una estructura de procesamiento de lenguaje natural de la red neuronal para TensorFlow.

Word2Vec se utiliza para el aprendizaje de representaciones vectoriales de palabras, llamadas "embeddings palabra". Word2vec es un modelo predictivo particularmente computacionalmente eficiente para aprender las incorporaciones de palabras a partir de texto en bruto. Viene en dos sabores, el modelo continuo de la bolsa-de-palabras (CBOW) y el modelo de Skip-Gram (capítulo 3.1 y 3.2 en Mikolov y otros).

Utilizado en tándem, SyntaxNet y Word2Vec permite a los usuarios generar modelos de incorporación aprendida de entrada de lenguaje natural.

Audiencia

Este curso está dirigido a desarrolladores e ingenieros que tienen la intención de trabajar con los modelos SyntaxNet y Word2Vec en sus gráficos TensorFlow.

Después de completar este curso, los delegados:

Entender la estructura y los mecanismos de despliegue de TensorFlow

- ser capaz de llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración
- ser capaz de evaluar la calidad del código, realizar depuración,
- ser capaz de implementar la producción avanzada como modelos de entrenamiento, términos de inclusión, gráficos de construcción y registro
14 horas
Descripción General
Deeplearning4j es una biblioteca de código abierto y de aprendizaje profundo escrita para Java y Scala. Integrado con Hadoop y Spark, DL4J está diseñado para ser utilizado en entornos empresariales en GPUs y CPU distribuidas.

Word2Vec es un método de computación de representaciones vectoriales de palabras introducidas por un equipo de investigadores de Google liderado por Tomas Mikolov.

Audiencia

Este curso está dirigido a investigadores, ingenieros y desarrolladores que buscan utilizar Deeplearning4J para construir modelos Word2Vec.

Próximos Cursos AI (Artificial Intelligence)

Cursos de Fin de Semana de Inteligencia Artificial, Capacitación por la Tarde de Artificial Intelligence, Inteligencia Artificial boot camp, Clases de Artificial Intelligence, Capacitación de Fin de Semana de Artificial Intelligence, Cursos por la Tarde de AI, Inteligencia Artificial coaching, Instructor de AI, Capacitador de Artificial Intelligence, Artificial Intelligence con instructor, Cursos de Formación de AI, AI en sitio, Cursos Privados de Artificial Intelligence, Clases Particulares de Inteligencia Artificial, Capacitación empresarial de AI, Talleres para empresas de AI, Cursos en linea de Artificial Intelligence, Programas de capacitación de AI (Artificial Intelligence), Clases de Inteligencia Artificial

Promociones

Descuentos en los Cursos

Respetamos la privacidad de su dirección de correo electrónico. No transmitiremos ni venderemos su dirección a otras personas.
En cualquier momento puede cambiar sus preferencias o cancelar su suscripción por completo.

is growing fast!

We are looking to expand our presence in Guatemala!

As a Business Development Manager you will:

  • expand business in Guatemala
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!

Este sitio en otros países / regiones